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Executive Summary

This research addressed the design, implementation, and empirical evaluation of task-
analytic models and intelligent aids for operators in the control of complex dynamic systems,
specifically aerospace systems. The work carried out under the sponsorship of this grant *
includes three related activities. First, we studied the use and development of models of operator
decision making in complex and predominantly automated space systems. The primary
representation was the operator function model (OFM). Second, the OFM was used to represent
operator activities in a NASA Goddard satellite ground control system, the MultiSatellite
Operations Control Center (MSOCC). Finally, and most significantly, OFMspert (Operator
Function Model Expert System), the third portion of this research addressed the development of an
operator's assistant: a stand-alone knowledge-based system that interacts with a human operator
in a manner similar to a human assistant in the control of aerospace systems. OFMspert is an
architecture for an operator's assistant that uses the OFM as its system and operator kndwledge
‘base and a blackboard paradigm of problem solving to dynamically generate expectations about
upcoming operator activities and interpreting actual operator actions. An experiment validated
the OFMspert's intent inferencing capability and showed that it inferred the intentions of
operators in ways comparable to both a human expert and operators themselves. Next, OFMspert
was augmented with control capabilities. An interface allowed the operator to interact with
OFMspert, delegating as much or as little control responsibility as the operator chose. With its
design based on the OFM, OFMspert's control capabilities were available at multiple levels of
abstraction and allowed the operator a great deal of discretion over the amount and level of
delegated control. An experiment showed that overall system performance was comparable for
teams consisting of two human operators versus a human operator and Omspert team. ;

Overall, this research has been very productive. In addition to the empirically validated
proof-of-concept demonstrations of intent inferencing and operator aiding, this grant supported
two Ph.D. theses, a master's thesis, and an undergraduate senior design project. Furthermore, the
research received three awards and was the topic of dozens of invited conference presentations
and a range of publications in international journals, newsletters, and technical reports. A
summary of the papers and presentations is contained in Appendix A. Appendix B contain copies

of the primary papers and technical reports.
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Introduction

The human's role as a supervisory controller of a complex, predominantly automated,
dynamic system often leads to problems, including (1) an increased monitoring load; (2) a false
sense of security whereby the operator trusts the automation to such an extent that any human
intervention or checking seems unnecessary; and (3) "out of the loop" familiarity, i.e., a
supervisory controller who acts primarily as a passive monitor rather than an active controller
and who is less likely to respond as quickly or appropriately to system failures (Wickens, 1984).
These and other difficulties with the increasing proliferation of automation have serious
implications for the ability of operators to cope with emergency situations.

Although one path is to pursue increasingly sophisticated automation, eventually
replacing human decision makers in complex systems, there is widespread acknowledgement
that within the foreseeable future, humans will continue to play a critical role is ensuring system
safety and efficiency (e.g., Chambers and Nagel, 1985). Thus, a major automation design issue is
the use of automation to enhance, rather than replace, the human in the control and decision
process. The goal is to use automation to amplify the human's strengths and compensate for the
human's limitations. A complementary issue is to design automation so that the human can take
advantage of the power of automated tools and systems, and yet remain alert to inherent and
transient automation limitations.

This research explored the design of a computer-based assistant that amplifies the
human's expertise and awareness of system evolution, yet compensates for known human
limitations. It was based on the assumption that while some control tasks and functions can be
fully automated, many important control functions require a design that incorporates human
overrides. Thus, a computer-based assistant interacts dynamically with a human operator.
However, as the name 'assistant’ implies, the relationship between human and computer decision
makers is one of superior to subordinate, with the human operator always in control. The
computer serves as an assistant to whom the operator can dynamically delegate as few or as many
control activities as s’he chooses.

This research proposed an architecture for a computer-based assistant that embodied these
properties. Implemented in a NASA satellite ground control application, empirical evaluation
demonstrated the extent to which the operator's assistant could dynamically understand operator
intentions and correctly interpret operator actions. Using its understapding and interpretation,
the assistant could then offer context-sensitive advice, reminders, and assistance in carrying out
the control functions.

An operator's assistant raises many research issues (see for example the discussion in

Chémbers and Nagel (1985) and Rouse et al. (1987)). A critical issue is the requirement for a



model of the human operator. This may be the single most important design issue because its
successful resolution is a necessary condition for the rest of the system. The operator model
provides the intelligence or the knowledge that an adaptive, computer-based assistant needs to
assist intelligently a human operator in the control of a complex, dynamic system. The computer
assistant uses the operator model to estimate correct and predicted operator state, i.e., to assess and
predict operator functions, intentions, and performance given current system state.

This research used and extended the operator function model (OFM) methodology to define
its knowledge about operator behavior. This report provides a brief summary of the operator
function model (OFM) methodology, particularly how it is used in a computer-based operator's
assistant. Next, because a proof-of-concept and subsequent validation depend on a domain of
application, the NASA Goddard Space Flight Center satellite ground control system, MSOCC
(Multisatellite Operations Control Center), is described together with its operator function model.
Finally, the remainder of the report describes the operator-assistant architecture--OFMspert
(Operator Function Model Expert System). First, an overview of the architecture is presented. A
summary of an empirical study that validated OFMspert's intent understanding capability
follows. Finally, ALLY, OFMspert augmented with control capabilities, is described together with
the results of an experiment demonstrating that an OFMspert-human team controlled the satellite

ground control system as well as a team comprised of two experienced human operators.
Operator Function Model

The operator function model (OFM) provides a flexible framework for representing
operator activities in the context of dynamic systems (Mitchell, 1987). The OFM is a
representation of how an operator might decompose and coordinate system control functions to
meet system objectives and ensure system safety. An OFM represents the interrelations between
dynamic system states and operator activities. Figure 1 depicts a generic OFM structure.

The OFM is a network in which nodes represent operator activities. Activities are
structured hierarchically, representing primary operator control functions at the highest level and
individual control actions at the lowest. Typical decomposition of activities is function to
component subfunctions, subfunction to component tasks, and task to component actions. Actions
can be both physical (e.g., an information query or system control command) or cognitive (e.g.,
information gathering, information processing, and decision making).

The OFM network is also heterarchic; that is, at the same level, there may be several
activities that, given system state, are undertaken concurrently. The heterarchy accounts for the
coordination and concurrent nature of operator activities as well as the operator's dynamic focus

of attention.



The OFM represents the dynamic nature of the system-operator interaction by network
arcs. The network arcs represent system events or the results of operator actions that initiate or
terminate operator activities at various levels of the network hierarchy.

The operator function model is a prescriptive model that specifies nondeterministically a
set of plausible operator functions and related activities given current system state and recent
operator actions. As such, it provides two necessary components of a computer-based assistant: (1)
the structure to represent knowledge about the system and operator activities; and (2) a mechanism
to define expectations of operator activities given current system state. In other applications, the
OFM has been successfully used to model, design, and control user interfaces (Mitchell and Saisi,
1987; Dunkler et al. 1988). In this research, the OFM provided the structure to organize the
knowledge about the controlled system and related operator activities required by the computer-

based operator assistant.
GT-MSOCC

In order to demonstrate and test the modeling and aiding techniques developed in this
research a realistic test-bed was required. We used GT-MSOCC, the Georgia Tech-Multisatellite
Operations Control Center. GT-MSOCC is an interactive, real-time simulation of MSOCC, a
ground control system for NASA near-earth satellites located at NASA Goddard Space Flight
Center in Greenbelt, Maryland. GT-MSOCC is a high fidelity simulation of the operator interface
to the actual control system and was designed to support a range of research topics on operator
modeling, training, and aiding (e.g., Mitchell, 1987; Mitchell and Saisi, 1987; Mitchell and
Forren, 1987). The GT-MSOCC operator monitors the data transmitted by satellites to ensure data
integrity, compensates for equipment failures and schedule anomalies, and responds to ad hoc

support requests.

GT-MSOCC Configuration

GT-MSOCC supports 17 spacecraft (16 near-earth satellites and the Space Shuttle).
Individual spacecraft have different requirements for the number and types of equipment needed
to support communication and data transmission. An overview of the MSOCC equipment network
is given in Figure 2. In general, all spacecraft use several NASA communication lines (Nascom
lines) to transmit their data through a variety of computer and communications networks for data
processing and recording. These configurations may include a Recorder Utility Processor
(RUP), a Telemetry and Command computer (TAC), one or more Application Processor computers
(AP), a Gate Way processor (GW), a Command Management System computer (CMS), and a
Virtual Interface Processor (VIP). Finally, data are sent to a Mission Operations Room (MOR) or



to a Shuttle Payload Facility (SPF). MORs and SPFs are spacecraft specific control rooms where
operators monitor and control the spacecraft. It should be noted that RUPs, CMSs, GWs, and VIPs
do not transmit data to subsequent components; rather they are ‘endpoints’ in the equipment

configuration.

GT-MSOCC Operator Function Model

At the highest level, the GT-MSOCC operator function model depicts the major operator
functions and the system events that cause the operator to transition among the functions or pursue
concurrent functions (Figure 3). This level of description represents operator goals in the context
of current system state. The arcs define system events that initiate a refocus of attention or the
addition of a function to the current set of operator duties. The GT-MSOCC operator function model
is presented in detail because this model defines the knowledge used to infer intentions and
understand operator actions, and, subsequently, to identify the control abilities that the operator's
assistant can offer.

Control of Current Missions. The default high-level function is to control satellites that
are currently transmitting data (Figure 4). This function involves two primary (default)
subfunctions: monitor the data flow at the equipment endpoints and monitor the hardware status.
If a hardware failure occurs, the operator initiates a fault compensation subfunction to replace the
faulty equipment. While monitoring data flow, if the operator suspects a problem with the amount
or integrity of the data at one of the terminal points in the equipment network, s/he will initiate a
troubleshooting/fault detection subfunction. To troubleshoot the operator examines individual
components in the equipment network attempting to locate the cause of the problem; if a suspect
component is identified, a fault compensation subfunction is initiated. Each subfunction is
further defined by a collection of tasks which in turn are supported by operator actions (e.g.,
system reconfiguration commands or display requests).

Support for Unscheduled Requests. System events cause the operator to focus attention on
additional or alternative high level functions. A request to the operator to configure the necessary
equipment for an unscheduled spacecraft contact causes the operator to initiate the "configure to
meet support requests” (Figure 5). This function consists of a variety of subfunctions including
(1) checking the overall system to ensure capacity is not exceeded (GT-MSOCC can support up to
five missions concurrently.); (2) checking the equipment requirements of the spacecraft in
question; (3) attempting to identify available equipment; and (4) if all the conditions are met,
indicating that the support request can be met and manually configuring the spacecraft's network.
As in the control of current mission function, each subfunction is further defined by a collection of

tasks which in turn are supported by operator actions.



Compensate for Automated Schedule Failures. Figure 6 depicts the subfunctions and tasks
associated with the compensate for schedule conflicts operator function. The automated schedule
that controls the allocation of specific pieces of GT-MSOCC equipment to specific spacecraft passes
is always dated, i.e., the schedules are often as old as twelve hours and, as such, do not reflect the
most recent system conditions. As a result, recently failed equipment or equipment originally
scheduled but currently supporting another spacecréﬁ is not taken into account by the automated
schedule and control system. When the automated control system finds that the scheduled
equipment is not available, the operator receives a request to manually reconfigure the equipment
network, specifying an alternative component. Three tasks comprise the reconfigure function.
First, the operator identifies the hardware components that are causing the conflict. Second, the
operator attempts to find replacement equipment. Third, if successful, the operator uses this
equipment to configure the equipment network. Since the spacecraft contact is relatively short
(approximately ten minutes), it is important that the operator configure the equipment network as
quickly as possible to avoid delays in contacting the spacecraft. '

Deconfigure Manually Configured Network. Figure 7 depicts the subfunction and tasks
associated with the deconfigure operator function. When the operator manually configures or
reconfigures an equipment network for a spacecraft, the operator must manually deconfigure it.
The system notifies the operator that the satellite contact is completed and tells the operator to
deconfigure the equipment network manually. The operator types the appropriate deconfigure
command and the equipment network is deconfigured. This is the operator's highest priority
function since equipment is not available for use by other spacecraft until it is deconfigured.
Thus, although the deconfigure operator function appears somewhat simple, the deconfigure
function is critical to overall system effectiveness.

Browsing/Planning. Although the high-level representation of th'e GT-MSOCC oberator
function model includes a high-level planning/browsing function (e.g., Figure 3), the
planning/browsing function was not implemented in OFMspert. The browsing/planning
hierarchical decomposition is less straightforward than other high-level operator functions. For
example, one approach accounts for all actions that cannot be interpreted by other activities as
browsing/planning activities. Current research is beginning to examine browsing and planning

functions and suggest mechanisms to support intent inferencing for these functions.
OFMspert

Background
An operator's assistant supports natural, real-time interaction with the human operator.

Our goal is to design the computer component of the supervisory control system so that it mimics



the functions that a human assistant performs. A computer assistant should be able to swiftly
assume responsibility for control tasks that the human operator may delegate and to offer the
human operator context-sensitive suggestions, advice, and reminders. The operator's assistant
design can be characterized in terms of three principles: a stand-alone cooperative subordinate,
dynamic task allocation, and dynamic intent inferencing. The stand-alone property is a
characteristic of knowledge-based systems. Dynamic task allocation is a philosophy that
underpins how human operators and knowledge-based systems cooperate in the control of complex
dynamic systems. Dynamic intent inferencing is the component that provides intelligence. As
such, it is at the very heart of the OFMspert design.

Dynamic Intent Inferencing

The intelligence and utility of the operator's assistant rest on its abilities to understand the
operator's current intentions and to provide context-sensitive assistance in the form of operator
aids (e.g., suggestions, advice, or reminders) or by assuming responsibility for portions of the
control task. To ensure generalizability, the operator's assistant requires a well-defined
knowledge structure that represents information about the controlled system and operator
functions, as well as a problem solving structure to build a dynamic representation of operator
intentions which reflects current system state and recent operator actions. There are several
candidate models that might be used for both of these requirements (Geddes, 1985; Jones, 1988,
Jones et al., 1990). The OFMspert research uses the operator function model (Mitchell, 1987) to
organize knowledge about the controlled system and related operator activities, and the
blackboard model of problem solving (Nii, 1986) to build a current hypothesis of operator
intentions. The next section summarizes how these models are used in the Actions Interpreter
(ACTIN), the understanding component of OFMspert.

ACTIN (Actions Interpreter): OFMspert's Understanding Component

The Actions Interpreter (ACTIN) is the OFMspert component that is primarily responsible
for dynamic intent inferencing. ACTIN dynamically builds a model (or "current best
hypothesis") of operator intentions in the context of current system state and attempts to "interpret”
operator actions in light of this understanding. The operator function model (Mitchell, 1987)
forms the basis of ACTIN's knowledge about how system events trigger likely operator activities
(e.g., a failure may initiate activities to compensate for that failure). Using the OFM, operator
activities are structured in a hierarchy of functions, subfunctions, taské, together with operator
actions undertaken to support the activities. )

The ACTIN model of intentions is implemented as a blackboard (Englemore, Morgan,
and Nii, 1988; Nii, 1986). Thus, ACTIN consists of a blackboard data structure which contains the



evolving representation of current operator intentions (i.e., functions, subfunctions, tasks, and
actions), and a collection of knowledge sources that constructs, maintains, and assesses the
blackboard data structure. As system triggering events occur in real time, ACTIN posts new
functions, subfunctions, and tasks on the blackboard. As operator actions occur, they are posted on
the blackboard and "connected" to any current tasks which they support. This process of
"connection” is intent inferencing and provides OFMspert's understanding. Figure 8 depicts
ACTIN's intent inferencing structure. More detail about OFMspert's blackboard is given in the

section that follows.

OFMspert Architecture

The generic structure of OFMspert is depicted in Figure 9. Six functional components
comprise the system. Each of these components performs certain functions necessary to an
operator's assistant.

In general, the arrows in Figure 9 represent message-sending paths within OFMspert. A
one-way arrow represents unidirectional communication; the tail of the arrow denotes the
component that sends the message and the head of the arrow denotes the component that receives it.
The receiver of a message may return a value to the sender. However, the reply path of a message
is not shown. For example, the workstation component has no arrows leaving it, indicating that
the workstation is a passive component that can only reply to messages but cannot generate any of
its own. A two-way arrow represents bi-directional communication between the two components;
in this case both components are capable of initiating communication. The message type in one
direction may be of a different type than the message type of the other direction. A message
between any two components may be a request for information or a request for the receiving
component to carry out an internal event. Each OFMspert component defines its own internal
events, and therefore appears as a black box to other system components.

In general, all new messages from the controlled system or information about operator
actions enter OFMspert through the OFMspert interface. The interface decodes the messages, and
new activities, called events, are sent to OFMspert's high level controller (HLC). The high level
controller schedules and manages the execution of OFMspert's internal events. HLC events can
be one of three types. The first is an update to the current problem space (CPS), OFMspert's
representation of the controlled system. The second type of event is an enhanced normative model
(ENM) event. The enhanced normative model contains normative information derived from the
OFM. This module also contains OFMspert 's control properties. The third type of event is a
blackboard event that changes ACTIN, OFMspert's blackboard.

The final OFMspert component depicted in Figure 9 is called the workstation, and it

contains a semantic description of the actual workstation the human operator uses in the control of



the system. The workstation itself does not initiate any events or activities; rather, it contains
information other OFMspert components may need. The remainder of this section provides a
detailed description of the OFMspert modules and control processes.

OFMspert Interface. The OFMspert interface, from an abstract point of view, is simply a
black box that provides the logical communications between OFMspert and the controlled system
(and human operator). At a very low level, there exists some form of hardware communications
between the computers supporting the controlled system and OFMspert (if they are located on
physically separate machines). At a higher level, the interface is responsible for decoding
messages sent to OFMspert and encoding messages sent by OFMspert back to the controlled
system. When the interface decodes a message received from the controlled system, it creates an
event based on the message type and posts the event in the high level controller's event queue to be
processed at the earliest time possible. For example, if an event occurs in the controlled system
(e.g., an equipment failure or an operator action) that instantiates a new operator function, a
message is sent to the OFMspert interface. The interface then creates a high level controller event
that, when processed, will instanciate a function/subfunction/task structure that is placed on the
blackboard. Abstractly, the OFMspert interface is an endless loop that continually decodes
messages, creates events, and posts events in the HLC event queue.

High Level Controller (HLC). The high level controller is the central scheduler for events
within OFMspert. HLC events are the result of activities initiated by either the operator or the
controlled system itself. Messages from the controlled system are decoded by the OFMspert
interface and cause OFMspert events to be created and scheduled for execution during OFMspert
system cycles. A system cycle begins when the HLC initiates the execution of a scheduled event
and ends when the sequence of actions required to carry out the event are executed. New events
created during the current system cycle and placed in the HLC event queue to execute at future
times are not considered part of the current system cycle. On each system cycle, the HLC executes
the first event in its queue whose time is before or at the current system time. As seen in Figure 9,
the arrows that point to the HLC originate at components that are capable of placing an event in the
HLC event queue. Modules with arrows initiated at the HLC are OFMspert components that can
execute an event when the HLC deems that one is ready.

Current Problem Space (CPS). OFMspert, in most facets of its operation, requires
knowledge of the current status of the controlled system. This information is used to hypothesize
operator functions, verify the semantics of operator actions, and assist in blackboard
assessments. OFMspert's current problem space maintains an internal representation of the most
prominent features of the current state of the controlled system. The CPS receives a message from
the OFMspert interface whenever there is a relevant state change in the controlled system and uses

this information to update its representation. Some less important status information may not be



continuously stored within OFMspert due to space or speed constraints. When OFMspert needs
additional status information about the controlled system it may ask for and receive this
information on an as-needed basis. The latter interaction is depicted in Figure 9 by the arrow
from CPS to the OFMspert interface.

Enhanced Normative Model (ENM). The enhanced normative model contains normative
information about the controlled system and the OFM-derived information about operator
functions and procedures. This component plays a critical role in intent inferencing and in
OFMspert's ability to interact with the controlled system. The final ENM implementation
contains all necessary information for both intent inferencing and system control.

The ENM contains the function, subfunction, and task activity trees that are used by
ACTIN for intent inferencing. Activity trees are static knowledge stored in an ENM data base
and indexed by system state changes. System events that initiate operator state changes are
derived from the OFM and are therefore also static information. When a relevant system state
change is decoded by the interface, an ENM event is placed in the HLC event queue. This event is
executed on the next system cycle and the ENM uses the proper system state change index to
retrieve the appropriate activity tree. Then, an ACTIN event to update the blackboard
representation is placed in ACTIN's event list. System events that cause new task information to
be sent to ACTIN are referred to as initiating conditions.

Operator actions, which are encoded into messages and sent to OFMspert by the controlled
system, are decoded by the interface, placed on the HLC events queue, and eventually sent to the
enhanced normative model. The ENM converts these actions to the proper blackboard form and
creates an ACTIN event to update the representation.

ACTIN (Actions Interpreter). ACTIN is OFMspert's blackboard and it is responsible for
the intent inferencing functions. Like most blackboards, ACTIN has three primary components:
a blackboard data structure, knowledge sources, and blackboard control. Figure 10 depicts the
ACTIN component in more detail.

ACTIN's blackboard is a hierarchical structure of nodes defining functions, subfunctions,
tasks, and actions. Blackboard nodes on the higher three levels, i.e., function, subfunction, and
task nodes, are usually model-derived; thus, some system event, i.e., initiating condition,
triggers an OFMspert cycle that posts nodes defined by an enhanced normative model activity
tree. Action nodes are always data-derived; thus, a blackboard action node is always the result of
an actual human operator action that was decoded at the interface, processed by the HLC,
interpreted by the ENM, and posted and processed by ACTIN's event list and corresponding
knowledge sources. Occasionally there are data-derived function, subfunctions, or task nodes.
Data-derived nodes are used by ACTIN to infer a function, subfunction, or task from one or more

operator actions not fully understood in the context of the current blackboard representation.



ACTIN, like HASP (Nii et al., 1982), contains three hierarchically related types of
knowledge sources (KSs): strategy, activator and specialist. The specialist KSs contain the
domain-specific knowledge needed to manipulate the blackboard data structure; these KSs
construct the blackboard representation (current best hypothesis) and perform blackboard
assessments. The activator KSs select the specialists and together form part of the blackboard
control structure. -

Within the blackboard there are two major types of events: construction and maintenance
of the operator representation, and assessment of the representation to evaluate operator
performance with respect to the normative procedures prescribed in the ENM. Every time the HLC
schedules an ACTIN cycle, the strategy knowledge source is the first control entity called. The
HLC has no control over what type of event the blackboard executes; this control resides in the
strategy KS. Every time the ENM schedules a blackboard cycle, the strategy KS determines which
type of event to focus on next. After selecting an event, the strategy knowledge source calls an
appropriate activator knowledge source. Events are one of two types: maintenance or assessment.
For each event type, there is a corresponding activator knowledge source. The activator KS chooses
the most appropriate specialist KS to process the event.

The strategy KS analyzes three lists to determine what event to focus on next. These lists
are the clock-events list, the events list, and the problems lists. Clock-events exert the greatest
influence on the blackboard control process. The clock-events list contains events scheduled for
future execution, for example, a periodic assessment of some control task. All events in the clock-
events list that are scheduled to perform at or before the current time are immediately executed.
The events list contains events that are generated by the ENM while interpreting system state
changes and operator actions. All new information is placed in the blackboard events list and,
thus, provides the strategy KS with a central location for finding new eveﬁts on which to f‘ocus.
During a single ACTIN cycle, all events on the events list are processed. The problems list
contains all operator action nodes that could not be understood when they arrived in ACTIN, i.e.,
actions that were posted on the action level but could not be connected to one or more task nodes at
the task level. Unconnected actions are put in the problems list in the hope that future operator
actions or system events can help to disambiguate their meaning. The problems list is examined
after all ready clock-events and events list events in the current cycle have been processed. Any
item in the problems list that is subsequently explained is removed and processed.

Information Fusion. The first requirement of the intent inferencer is to construct a
representation of the operator's current state. To do this, both model-derived and data-derived
information are posted and manipulated on the blackboard data structure by knowledge sources.
The relationship between the objects at different levels is specified by named links generated by

the knowledge sources. The objects and links between them generally form a representation that
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pictorially resembles a forest of rooted trees. Each 'tree’ represents a function and its associated
subfunctions, tasks, and actions. When a new action enters ACTIN and is placed on the
blackboard, the KSs attempt to connect it to all possible tasks that the action may support. An action
that connects to tasks located in different activity trees is assumed to support all active functions.
However, this may or may not be true. When new information enters ACTIN, there is often
insufficient information to determine which task(s) the action is intended to support. Our policy is
to maximally connect new actions, i.e., connect an action to all possible tasks that it might
support. The problem solving strategy opportunistically disambiguates the situation at a later
time.

Information Removal. An important issue in constructing and maintaining the
operator's current state representation within ACTIN is that of knowing when to remove
information from the blackboard. At some point, the utility of individual pieces (or groups) of
information becomes negligible, i.e., old information becomes outdated or obsolete. To facilitate
current maintenance and assessment operations, information with low utility should be removed.
The dilemma arises in determining when information has negligible value. Removing
information that is still needed may cause future assessments to hypothesize incorrectly that an
operator error has occurred. To prevent this situation, information removal is governed by a
strategy of least commitment in which the decision to remove information is delayed until it is
absolutely certain that the information has no value.

OFMspert uses well-defined system events as the primary means of determining when
information should be removed from the blackboard. The enabling conditions for transitions
between nodes at the heterarchic level of the OFM include those that cause information removal.
Within OFMspert, enabling conditions that terminate an operator function cause an assessment
of the function, subfunction, or task and information removal of the corresponding blackboard
nodes. Action nodes are removed only when they are no longer connected to any current tasks,
i.e., no longer in support of any current functions or subfunctions. Maximal connection of actions
ensures a conservative information removal strategy.

Blackboard Assessment. In OFMspert, knowledge sources, derived from the OFM of the
controlled system, carry out assessments. Assessment knowledge sources are invoked by
blackboard control to determine the extent to which operator actions support currently hypothesized
functions, subfunctions, and tasks. Assessments are always made in the context of a particular
functions or subfunctions. Initially, the result of an assessment is a detailed evaluation written to
a file. The second phase of this research, OFMspert with control capaﬁilities, uses assessments in
real time to provide the basis for active operator aiding.

An Example of OFMspert Intent Inferencing Operation. A general example of OFMspert

intent inferencing is presented below. However, first we must distinguish between initiating and
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terminating conditions. Initiating conditions "start something" in the controlled system and thus
will cause the posting of new operator function, subfunction, and tasks on the blackboard.
Terminating conditions "finish something" in the controlled system and thus will cause the
assessment and removal of now-obsolete functions, subfunction, tasks, and any connected actions
from the blackboard. It is possible that operator actions and changes in the controlled system are
neither initiating nor terminating, e.g., an information request. It is also possible that the same
action or system change can be both terminating and initiating--that is, finish one thing and start
something else in the controlled system, e.g., a manual configuration action terminates the
configure function and initiates a control of current mission function.

Suppose the operator executes an action in the controlled system. This action is coded into a
message and sent to the OFMspert interface, which parses the message and schedules the
appropriate enhanced normative model event for handling this input and, if necessary, schedules
another event to update the current problem space. "Scheduling" here means adding an event to
the high level controller's event queue in time-sorted order. The event queue is repeatedly checked
to see if it is time for its first event to "fire.” When that time comes, the message to begin
processing will be sent to the ENM. The ENM will generate events to be processed by the
blackboard. The exact nature of these events depends on whether the operator's action was
initiating or terminating. For any operator action, the ENM will always add a "post action” event
to the blackboard's event list. If the action is initiating, the ENM will also generate the appropriate
functions subfunction, and task structure and add a "post activity tree” to the blackboard's event
list. If the action is terminating, the ENM will add "assess" and "information removal” events to
the blackboard's event list. If the action is both initiating and terminating, the ENM will create
and add "assess", "information removal”, and "post activity tree" events to the blackboard's
event list. After this direct interaction with the blackboard, the ENM schedules an event in the
high level controller's event queue to actually carry out the events just added to the blackboard's
event list. Subsequent OFMspert system cycles update the current problem space and the
blackboard.

Summary. The generic OFMspert consists of six major components. The blackboard
architecture permits a hierarchical representation of the operator's inferred current functions,
subfunctions, and tasks. This dynamic and hierarchic organization of the blackboard parallels
the structure of the operator function model. The blackboard data structure naturally and
efficiently represents operator actions and controlled system events as a structure of functions,
subfunctions, tasks and actions. The knowledge sources are convenient, well-organized
structures that represent domain knowledge and can assess the overall effectiveness of how the
operator coordinates control actions to meet higher level system goals. Details of the software

engineering design and specification are given in Rubin et al. (1988).
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The effectiveness of an operator's assistant depends on the validity of its model of 6perator
intentions and its interpretation of operator action. Thus, the next step in this research project

addressed the validity of OFMspert's intent inferencing component.
Validation of OFMspert's Intent Understanding

This phase of the OFMspert research assessed the degree to which OFMspert possessed the
knowledge or understanding to intelligently assist an operator. Validation of intent inferencing
assures that the system is correctly inferring the intentions of the human operator. Within the
context of ACTIN's structure of intentions, this means that the system infers support for the same
tasks (and by extension, subfunctions and functions) as the human, given the same set of operator
actions. The "human" in this case can be a human domain expert performing a post-hoc
analysis, or the human operator giving a concurrent verbal account of intentions. Thus, the
experimental validation of ACTIN's intent inferencing was conducted in two studies. In
Experiment 1, a domain expert's interpretations of operator data were compared to ACTIN's
interpretations of those same actions on an action-by-action basis. In Experiment 2, concurrent
verbal protocols were collected from GT-MSOCC operators. Statements of intentions for each
action were compared to ACTIN's interpretations.

In experiment 1 a domain expert hypothesized intentions from the data of ten GT-MSOCC
operators. These ten operators were the original GT-MSOCC subjects (Mitchell and Saisi, 1987;
Mitchell and Forren, 1987) in a GT-MSOCC control condition. The last three sessions of each
subject were used in this analysis, yielding a total of 30 hours of experimental data. The data from
these subjects consisted of various logfiles that detailed the events that occurred during the
experimental sessions. Perfect state information (i.e., what missions were currently configured,
what equipment failures existed) was available, as well as every action by the operator. The
domain expert used these logfiles as the basis for interpretations.

The second experiment compared subject verbal protocols to ACTIN interpretations. This
experiment used verbal data as a measure of subjects' intentions in controlling GT-MSOCC.
Verbal protocol data have been extremely useful in the development of human-machine models.
Verbal data can be treated as any other class of data that proposes a correspondence between
observed behavior and predictions of a model; in fact, verbal reports may be a preferred source of
data because of the richness of information available (Anderson, 1987, Ericsson and Simon, 1984;
Miller, Polson, and Kintsch, 1984).

The data in Experiment 2 consist of verbal protocols from two subjects for seven GT-
MSOCC sessions. Both subjects were trained in the standard control condition (see Mitchell and

Saisi, 1987). The subject participated in 12 experimental sessions. The first five were considered
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training. During sessions 6 through 12, the subject controlled the GT-MSOCC system while
verbalizing intentions, actions, and problem solving activities. The subjects were instructed to
verbalize why they performed every action in the system; occasionally the experiment prompted
the subjects with "Why?" when they failed to verbalize an intention for an action.

The verbal protocols were transcribed and interpreted by the experimenter. (Complete
segmented protocol transcriptions are available in Jones, 1988.) Intentions were coded from the
verbalizations in several ways. The most straightforward was a direct statement of intent (e.g.,
an utterance of the type "I'm asking for this display because I want to find out this."). A variation
of this straightforward verbalizing was of the type "I want to do this", immediately preceded or
followed by the subject's typing in the relevant command. A less direct method of inferring
intentions involves examining what information the subject used as a result of the action.

The data from the two experiments consist of corresponding sets of interpretations for the
same actions. One set of interpretations is from ACTIN, the other from a human. These data can
be considered paired observations, since for every action there are two interpretations; the same
entity (action) is observed under two experimental conditions: ACTIN and human
interpretations.

Data summarizing the results of these two experiments are given in Figures 11 and 12.
Overall, ACTIN's intent inferencing ability compared favorably to human interpretations of the
same actions, both in the expert's analysis of data files and the verbal protocol analysis. The
observed differences were primarily due to model error and can be remedied in part by some
extensions to the operator function model and to ACTIN. Many mismatches occurred because the
GT-MSOCC OFM did not represent planning and browsing (e.g., information requests to support
upcoming events). Certain classes of actions--notably important system configuration
commands--were very well-matched. More detail is available in Jones (1988) and Jones et al.
(1990).

ALLY: OFMspert with Control Properties

OFMspert components coordinate their functions to build a representation of the operator’s
current functions and associated subfunctions, tasks, and actions. In the initial phase, OFMspert
had the knowledge about how to control the system, e.g., how to troubleshoots or compensate for
failures, but did not have control capabilities. Given an effective model of operator intentions, the
next step in the OFMspert research made OFMspert less passive, enabling it both to engage in
system control and to interact with the operator in the mode of an assistant. The next sections
describe ALLY, OFMspert enhanced with control properties, and the empirical evaluation of

ALLY as an operator's assistant.
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Characteristics of an Operator’'s Assistant.

The two primary characteristics of an effective operator's assistant are understanding
and control. ACTIN, OFMspert's understanding component, was shown to be an effective
architecture for postulating and interpreting operator activities. Given a reliable understanding
component, the next OFMspert phase focused on prbviding OFMspert with system control
properties which the human operator could initiate, refine, and terminate. OFMspert control
properties were intended to be as effective as those of a human assistant and include interactive
refinements between OFMspert and the human operator that emulated the manner in which
experienced teams of human operators interact.

ALLY, like OFMspert itself, is both a theory of interaction and an architecture in which the
theory is implemented and evaluated. The theory underpinning the ALLY architecture is based
on a literature review and a case study of two human operators jointly controlling a dynamic
system '

The literature suggests three principles of effective cooperation. First, operators use
multiple mental models to represent knowledge of the physical system, their own activities, and
their knowledge of other team members. These models are maintained at multiple levels of
abstraction. The appropriate level is dynamic and determined by a cooperation strategy. The
second principle is that cooperation includes "cognitive balancing”--dynamically balancing the
workload among team members given current system demands and operator availabilities.
Finally, the literature suggests that cooperation is flexible. Activities between operators are

dynamic and interactive.

Case Study of a Team of Human Operators. )

ALLY is designed to assist the GT-MSOCC operator in carrying out all of the GT-MSOCC
supervisory control functions. The design was based on a model of the GT-MSOCC operator
control functions and attempted to duplicate the capabilities of a human assistant observed in the
case study. The case study documented the interaction of a team of two experienced operators
controlling GT-MSOCC. During operation, verbal protocols of the two-person team were collected.

In the case study, the relationship between the human operator and the human assistant
was one in which the operator supervised the assistant. The assistant, however, was not passive.
The assistant understood the cognitive complexities of the operator functions and actively
monitored the system for failures, and, when necessary, initiated fault detection and
compensation activities. The assistant helped the primary operator by issuing reminders of
incomplete activities . The primary operator dynamically delegated the tasks to the assistant. At

times, the responsibility for a whole function would be given to the assistant; at other times, the
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. second operator assisted the primary operator in performing a function. The two operator team
effectively controlled GT-MSOCC. Together, the two operators controlled the system such that

overall system performance was better than performance for a single operator.

ALLY Architecture

The operational concept in ALLY's design is that ALLY functions in a manner similar to
a human assistant. The operator has complete control over ALLY and can delegate as few or as
many of the control responsibilities to ALLY as desired. ALLY is not passive, however; it also
actively monitors the system and initiates troubleshooting activities when necessary.

ALLY interacts with the GT-MSOCC system in a distributed fashion (Figure 13). The
distributed architecture simulates the environment of a human assistant. ALLY, like the human
assistant, performs independently of the GT-MSOCC system. This architecture is consistent with
the concept of an assistant that executes autonomously in its own environment.

ALLY has the same information as the human operator. ALLY receives messages from
the GT-MSOCC system indicating changes in system state. As with the human operator, ALLY's
knowledge of system events always lags somewhat behind the actual state of the system. For
example, if the operator replaces a failed component, ALLY does not update its representation until
GT-MSOCC finishes the replace and notifies both the operator and ALLY of the change.

ALLY receives some information automatically, primarily information about changes in
system state. ALLY requests other information from the system. Time and speed problems is a
distributed architecture prevent an autonomous agent from having and maintaining complete
knowledge about the controlled system. For the GT-MSOCC application, ALLY, like the human
operator, requests satellite and equipment schedule information on an "as needed” basis. When
ALLY needs schedule information to perform a specific activity (e.g., find a replacement), ALLY
requests the appropriate schedule from the GT-MSOCC system.

ALLY Operator Interface

In order to interact with ALLY, the three monitor GT-MSOCC workstation was augmented
with an ALLY workstation. The ALLY workstation consists of a computer, a CRT and a mouse.
The operator uses the workstation to delegate tasks to ALLY and ALLY uses it to communicate with
the operator.

The ALLY display consists of three primary windows (see Figure 14). The top window
displays the current time. The middle window consists of control buttons' that the operator uses to
delegate control tasks to ALLY. The bottom window is the Message Transcript window. ALLY

uses this window to communicate with the operator. In the Message window, ALLY precedes each
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message with a time stamp indicating when the message was written; for critical messages,

ALLY uses an audio signal to notify the operator and precedes the message line with asterisks.

ALLY's Control Capabilities

The operator delegates activities to ALLY by clicking the mouse on one of the control
buttons. The tasks defined in the control buttons are based on the operator function model of the
GT-MSOCC operator. The "Check Telemetry”, "Failure Support”, "Question Support”,
"Reconfigure Support”, and "Deconfigure Support” control buttons relate directly to the five
control’funct.ions defined by the GT-MSOCC operator function model. In addition, ALLY provides
"Mission Support" and "Equipment Support” information to the operator. These classes of support
were suggested by the case study. The operator uses the "Interrupt” control button to stop ALLY
from carrying out a task. This interrupt capability provides the operator with complete control
over ALLY. Not only can the operator decide which tasks to delegate to ALLY, the "Interrupt”
control button provides the operator with the capability to flexibly 'de-allocate’ tasks. Gaines and
Shaw (1983) described this "reset” capability as an important part of a user interface; Fox (1987)
identifies it as an essential part of interaction in problem solving and tutoring.

Each of the control functions defined by the control buttons, except for "Interrupt”, has an
associated set of subtasks. These tasks reflect different levels of abstraction and/or aggregation at
which the operator can interact with ALLY. The operator can delegate to ALLY as much or as little
responsibility as desired. )

ALLY uses a series of "pop-up” windows to define the range of subtasks. When the operator
selects one of the control buttons, ALLY displays a submenu. If at any point during task
specification, the operator makes a mistake or changes his’her mind and decides not to have
ALLY perform the task, the operator can click outside of the menu and ALLY stops the task
specification process. This "repair” capability keeps the operator in complete control of the
conversation (Fox, 1987). .

When ALLY completes an assigned task, it checks to see if the overall operator or control
function the task was supporting has been completed. If the function is incomplete and ALLY
knows that it can now complete the function, ALLY offers to do so. For example, assume that
Application Processor 4 (AP4) failed. The operator tells ALLY to find a replacement for AP4.
ALLY determines that AP1 can be used and tells the operator; then, ALLY offers to perform the
actual replacement task. The operator can either authorize ALLY to perform the task or do it
him/herself.

The principle is that ALLY understands the operator's functions in the system and knows
that a related task will need to be undertaken eventually, While ALLY only performs delegated

system control tasks, it understands the overall control functions and thus, can assess the degree
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to which they are completed and offer timely assistance. This behavior is similar to the
interaction between the two human operators controlling the GT-MSOCC system. The human
assistant would consistently offer to complete a function if only part of the tasks were performed.
This flexibility does not reduce any of the operator's control over ALLY. Rather, it permits the
operator to balance the workload in the context of current system state.

The following sections describe the functionality of each ALLY control button and how the
operator uses the buttons to delegate tasks to ALLY. The relation between control buttons and the
GT-MSOCC operator function model is also described.

Mission Support. The operator uses "Mission Support” to request ALLY to provide
information about a specific mission. At this time, "Mission Support” consists of one task; the
operator can ask ALLY to identify the time a current mission is scheduled to be completed.

"Mission Support” can be used to assist in several operator tasks defined in the operator
function model. For a mission with a failed component, ALLY can determine how long a
replacement component is needed by checking the duration of the mission(s). The duration of
current missions also supports the "Check System Constraints” subfunction of the "Respond to
Unscheduled Support Requests” (i.e., determine if the maximum number of concurrent missions
supported by GT-MSOCC will be exceeded).

Figure 15 shows the menus ALLY uses for "Mission Support”. When the operator clicks on
"Mission Support”, ALLY displays a menu showing the tasks that the operator can delegate to
ALLY. When the operator selects "Show Mission Time Down", ALLY displays a list of the current
missions and asks the operator to select one. For the selected mission, ALLY determines its
termination time from the OFMspert Current Problem Space and reports the time to the operator in
the Message Transcript window.

Equipment Support. The operator uses "Equipment Support” to ask ALLY to provide
information about equipment and classes of equipment. Figure 16 shows the various ALLY menus
for this function. These tasks, i.e., "Check if Equipment Available" and "Find a Free
Equipment”, support several of the GT-MSOCC control functions, including "Identify
Replacement Equipment” for both the "Fault Compensation” and "Compensate for Schedule
Conflict” functions, and "Identify Equipment” for the "Unscheduled Support Request” function.

For "Check if Equipment is Available”, ALLY determines if a specific piece of equipment
is available for a specified period of time (e.g., AP1 available for 3 minutes). In a series of pop-up
menus, ALLY asks the operator to define the equipment class, component number, and duration.
ALLY then asks GT-MSOCC for the equipment schedule for the designated component. When
ALLY receives the schedule, it checks to see if the equipment is available for the time desired and

tells the operator the answer in the Message Transcript window.
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For "Find a Free Equipment”, ALLY identifies an available component of a specified
class for a specific duration. Again, ALLY uses a series of pop-up menus with which the operator
defines the equipment class and duration. Then, ALLY requests a schedule from GT-MSOCC for
all components of that equipment class. ALLY searches the schedules to identify a component that
is free for the duration requested. The results of ALLY's search, either successful or not, are
written in the Message Transcript window.

Check Telemetry. In the GT-MSOCC operator function model, "Control Current Mission”
consists of three major subfunctions: "Monitor for Hardware Failures and Software Problems”,
"Detect the Cause of Software Problems", and "Compensate for Failed or Degraded Hardware".
These subfunctions are, in turn, abstracted into several operator tasks . ALLY decomposes
"Control of Current Missions" into two activities: "Check Telemetry” and the "Failure Support”.

Figure 17 depicts the relationship between the operator activities described in the operator
function model and ALLY's "Check Telemetry” function. "Check Telemetry” is divided into two
activities, monitor the network endpoints (e.g., mission operations room (MOR)) and
troubleshoot. The operator can delegate either of these activities to ALLY. The operator can
delegate two monitoring tasks to ALLY: "Monitor Endpoints (e.g., RUP3)" and "Monitor
MORs/SPFs". Both activities directly relate to the OFM monitor subfunction. The operator can
delegate three troubleshoot tasks to ALLY: "Troubleshoot Interior Points”, "Troubleshoot All
Equipment", and "Troubleshoot a Specific Equipment”. The troubleshoot tasks relate to the
operator function model's "identify degraded hardware” subfunction.

Taken together, these ALLY-act-ivities provide the operator with the flexibility to choose the
extent of the troubleshooting activity that s/he delegates to ALLY. With the exception of the
"Troubleshoot a Specific Equipment” task, when the operator delegates any of the monitor or
troubleshoot tasks to ALLY, ALLY asks the operator to specify which of the current missions to
check. ALLY maintains a collection of the current missions in OFMspert's Current Problem
Space and provides the operator with a list of all of these missions, together with an option to check
all of the missions. The operator can, therefore, ask ALLY to focus on a specific mission or on all
of the missions.

Failure Support . "Failure Support” consists of three activities: "Find a Replacement”,
"Replace a Failed Equipment”, and "Issue an Alert Message”. Figure 18 depicts the relationship
between OFM and ALLY. The ALLY activities are structured to provide the operator with the
capability to delegate a range of fault compensation tasks to ALLY.

The first ALLY activity in Figure 18, "Find a Replacement”, corresponds to the "Identify
Replacement Hardware" operator control activity. When the operator delegates this task to ALLY,
ALLY requests the appropriate equipment schedules from the controlled system and attempts to

identify a replacement. In the "Find Replacement” activity, ALLY does not replace the
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component; rather, ALLY examines the equipment schedules and reports the results to the
operator. As with a human assistant, if ALLY finds a replacement, ALLY then offers to replace
the failed component. If ALLY cannot find a free replacement, it offers to send the appropriate
alert message to the GT-MSOCC system.

"Replace a Failed Equipment" corresponds to the "Manually Reconfigure” operator
control activity in the operator function model. When the operator delegates this task to ALLY,
ALLY first checks to see if it has already found a replacement (i.e., the "Identify Replacement
Hardware" task). If ALLY finds a replacement, it issues the replace command. If ALLY does not
find a replacement, it offers to send the appropriate message back to the controlled system. When
the operator selects the "Issue alert” option, ALLY tells the controlled system that no replacement
equipment is available.

When the operator delegates any of these three tasks to ALLY, ALLY uses a series of pop-up
menus to allow the operator to identify the failed component (Figure 19). ALLY assumes that the
failure is one of its currently hypothesized failures and therefore displays a list of the currently
‘hypothesized equipment failures. The operator, however, might know about other failed
components; consequently, the "Other” menu option provides the operator with the capability to
identify a failure that ALLY does not list. When the operator selects "Other”, ALLY uses pop-up
menus to let the operator identify a new failed component. If ALLY does not know about any
failures, ALLY immediately goes to these menus to have the operator specify the failure.

"Failure Support" also allows the operator to update ALLY's set of suspected failures.
Occasionally, ALLY may misdiagnose a software failure. A failure identified by ALLY may
have been the normal fluctuations in the system. The operator uses "Remove a Failure" to tell
ALLY to remove a component from its failure list.

Question Support. "Response to Unscheduled Support Requests” ié a function that- consists
of four related activities: "Determine Feasibility of Support”, "Determine Equipment Needed",
“Identify Equipment”, and "Manually Configure Mission". Each of these activities are supported
by various tasks under ALLY's "Questions Support" control button. "Question Support” consists of
a range of activities that the operator can ask ALLY to perform: "Show Question”, "Show
Equipment Needed”, "Check Mission Schedules”, "Check Equipment Schedules”, "Determine
Answer, "Answer Question”, and "Configure Mission". Figure 20 depicts how each of these tasks
supports the corresponding subfunctions in the operator function model.

"Question Support” has a range of activities from very simple support (e.g., "Show
Question”) to the complete set of activities required by the function (e.g., "Answer Question”). In
this manner, the operator decides how much or how little support ALLY provides. When the
operator selects "Show Question”, ALLY restates the support request. "Show Equipment Needed"
corresponds to the "Determine Equipment Needed" subfunction. When asked, ALLY provides the
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. operator with the mission's equipment requirements. "Check Mission Schedules” corresponds to
the "Determine Feasibility of Support” subfunction. When the operator delegates this activity to
ALLY, ALLY check three system constraints. First, ALLY checks the current system state to see if
five missions are already being supported. If so, the request cannot be supported. Next, ALLY
requests the GT-MSOCC schedule to see if scheduling this mission will cause more than five
missions to be supported concurrently in the time frame under consideration. Finally, ALLY
requests the mission schedule to see if the mission is already scheduled during the time frame of
the support request. If ALLY determines that the request cannot be supported, ALLY tells the
operator and offers to answer "NO" to the question. If the mission can be supported, ALLY reports
this to the operator in the Message Transcript window.

The "Identify Equipment" operator subfunction corresponds to ALLY's "Check Equipment
Schedules”. When requested, ALLY attempts to identify the available equipment that can be used
to support the mission. For each class of equipment needed by the mission, ALLY requests
schedules from GT-MSOCC and identifies specific components that are free and unscheduled. If
ALLY finds that all of the equipment is available, ALLY reports this result in the Message
Transcript window together with the specific pieces of equipment. If ALLY finds that some of the
necessary equipment is not available, ALLY tells the operator what is not available and offers to
answer "NO" to the question.

ALLY's "Determine Answer" activity corresponds to two operator subfunctions:
"Determine Feasibility of Support” and "Identify Equipment Needed". When the operator selects
"Determine Answer”, ALLY first checks the system constraints. If ALLY finds that the
constraints are satisfied, ALLY proceeds to check the equipment schedules to identify the specific
components that can be used to support the mission. If ALLY finds the necessary equipment, ALLY
then indicates to the operator that the mission can be supported and specifies an equipment network
that can be used. ALLY then offers to configure the mission; the operator may ask ALLY to
configure the mission or do it him/herself. If ALLY finds that the mission cannot be supported,
ALLY reports the result and reason in the Message Transcript window and offers to answer "NO"
to the question.

"Answer Question" is similar to the previous activity, except that in this case, ALLY
answers the question, i.e., ALLY sends a message to GT-MSOCC. Then, if the answer is "yes",
ALLY offers to configure the mission.

The "Configure Mission" task corresponds to three of the operator subfunctions:
"Determine Feasibility of Support”, "Identify Equipment Needed", an& "Manually Configure
Mission". When the operator selects "Configure Mission”, ALLY performs the same activities as

"Answer Question”, except, when the answer is affirmative, ALLY automatically configures the



mission. If the mission cannot be supported, ALLY reports to the operator and offers to send an
alert message to GT-MSOCC.

ALLY activities requiring interaction with the controlled system are somewhat difficult
for ALLY (see the discussion of ALLY limitations in a subsequent section), thus, care was taken to
structure the tasks to allow the operator to delegate a range of responsibilities. In this way, the
operator can choose how to use ALLY's advice and has control over the type of support ALLY
provides. For example, the operator may ask for a recommendation or may actually delegate the
entire replacement task to ALLY.

Reconfigure Support. The operator uses "Configure Support” to delegate activities to ALLY
related to the "Compensate for Automated Schedule Failure” operator control function. This
function consists of three subfunctions: "Determine What Hardware Component is

Unavailable", "Identify Replacement Hardware", and "Manually Reconfigure”. Each of these
subfunctions are supported by menu options in "Reconfigure Support”. The menu options are
"Find Replacement Equipment", "Reconfigure the Mission", and "Issue an Alert". Figure 21
depicts the relationship between the OFM and ALLY for reconfigure support.

ALLY maintains a list of pending requests. When the operator delegates any of these
activities to ALLY, ALLY asks the operator to identify the pending mission (i.e., the mission that
was unable to be configured) from the list ALLY displays.

"Find Replacement Equipment” corresponds to two operator subfunctions: "Determine
What Hardware Component is Unavailable" and "Identify Replacement Hardware". When the
operator selects "Find Replacement Equipment”, ALLY identifies the equipment that is
unavailable from information contained in OFMspert's Current Problem Space. ALLY then
attempts to identify replacement equipment. For a failed component, ALLY requests schedules for
that component's equipment class from GT-MSOCC. If a replacement cannot be found, ALLY
informs the operator and offers to issue the appropriate Alert message. If a replacement is found,
ALLY tells the operator and offers to reconfigure the mission.

"Reconfigure Mission” combines all three of the operator subfunctions. When the operator
delegate this activity to ALLY, ALLY first identifies the unavailable equipment, then attempts to
find replacements, and, if a replacement is found, configures the mission. If ALLY cannot
reconfigure the mission because there is no replacement component, ALLY tells the operator and
offers to issue the appropriate Alert message.

Finally, when the operator selects "Issue an Alert”, ALLY sends the appropriate Alert
message to GT-MSOCC. This activity supports the "Configure Mission" subfunction since a task
for this subfunction is to issue an alert if the mission cannot be configured.

Deconfigure Support. "Deconfigure Support” corresponds to the "Manual Deconfigure

Mission” function in the operator function model. This function consists of two activities:
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"Identify Hardware String” and "Remove Components”. "Deconfigure Support” has onliy one
activity, "Deconfigure Mission". This task corresponds to both of OFM deconfigure activities;
Figure 22 depicts the relationship between ALLY and the OFM deconfigure function.

When the operator selects "Deconfigure Mission", ALLY asks the operator to specify the
mission to be deconfigured. ALLY generates a list of missions from OFMspert's currently
hypothesized deconfigure subfunctions. ALLY then issues the deconfigure command to the
controlled system and tells the operator that the mission is deconfigured.

Interrupt Button. The last control button is "Interrupt”. The operator uses "Interrupt” to
stop ALLY from performing a delegated activity. The operator interrupts ALLY by clicking the
"Interrupt” control button. ALLY stops processing the current task and does not report any
intermediate results to the operator.

Summary. The control buttons were designed with specific principles in mind. First, and
foremost, the operator is provided a great deal of flexibility to decide how much or how little support
ALLY gives. The operator has complete control over the extent of ALLY's system control
activities. The operator may ask ALLY to determine an answer and then the operator may carry
out the function him/herself; or, the operator may ask ALLY to perform the entire function.

Second, the definition of the system control activities is well defined. ALLY only performs
the task that the operator delegates, and nothing more. For example, "Answer Question” means to
answer the support request question and nothing more. It does not imply that ALLY should
configure the mission if the answer is yes. In this manner, both the operator and ALLY
understand exactly what is meant by the set of mutual activities and there are no hidden
meanings. '

Third, while ALLY only performs the activities that the operator requests, ALLY's model of
the operator and the operator control function also permits ALLY to offer assistance and reminders
with respect to the current operator functions. For example, if a control activity is incomplete,
ALLY offers to complete it, if it can. "Respond to Support Request”, for example, does not end with
answering "YES" to the support request question; the mission must also be configured. ALLY
anticipates that the operator might request ALLY to configure the mission and offers to do so. It is
important to note, however, that timely offers of assistance or reminders do not limit any of the

operator's control flexibility; the operator may always say "NO" to ALLY's offer of assistance.

ALLY's Automatic Tasks
In addition to system control activities requested by the operator, ALLY also performs
several operator support tasks automatically. For the GT-MSOCC domain, ALLY monitors, and

when appropriate, troubleshoots the equipment networks. ALLY also automatically monitors



critical events and reminds the operator when it appears that the operator may have forgotten or
overlooked an event.

The type of automatic support that ALLY provides will vary with the domain; the principle,
however, is that automatic activities are those that exploit the power of a computer-based assistant.
When faced with multiple tasks, the human operator typically performs them serially. A
computer, on the other hand, can perform tasks concurrently. Consequently, since the design
objective of the computer-based assistant is not only to replicate the human assistant, but to provide
a tool that the operator could use, ALLY takes advantage of the computer's processing capabilities.

ALLY performs automatic activities in addition to activities that the operator delegates. In
this manner, the operator remains in control of GT-MSOCC and ALL. In addition, the operator
has a tool to assist in performing the most cognitively demanding activity, i.e., monitoring the
equipment networks, without having to ask specifically for help.

ALLY's Aufomatic Fault Detection. ALLY, using the power of a computer, continually
monitors the data transmissions at the network endpoints for each currently supported mission. If
ALLY detects a problem, ALLY informs the operator and automatically begins to troubleshoot the
network to identify the cause of the problem. Once ALLY has identified the cause, ALLY informs
the operator that it suspects a component failure. ALLY does not initiate replacement activities,
however, unless the operator directs ALLY to do so.

ALLY's automatic monitoring and troubleshooting activity is based on a cognitive task
analysis described in the operator function model. The operator function model describes the
operator functions in levels of abstraction. The most cognitively demanding task is monitoring
and troubleshooting. This activity is very difficult because of the format of the telemetry
information displayed to the operator and because not all of the information necessary to perform
the task is immediately or simultaneously available.

Part of the nature of a cooperative problem solving team is that both operators understand -
the cognitive nature of the task and act accordingly. The operators attempt to "balance” the
workload between them. ALLY understands the cognitive nature of the supervisory control
functions and attempts to provide assistance for tasks that the operator needs help in performing
(i.e., monitoring and troubleshooting). The primary purpose of an assistant is to reduce workload
and improve overall system performance. By aggregating and abstracting the raw telemetry data
to something more meaningful to the operator--a task that a computer performs effortlessly--ALLY
reduces the human operator's cognitive workload in the control of GT-MSOCC.

Reminding Capability. ALLY's other automatic activity is to remind the operator of
critical events that might have been missed or overlooked. Inthe GT-MSOCC system, ALLY,
when necessary, reminds the operator of three types of events, all three are system requests asking

the operator to manually change the system state. For GT-MSOCC these requests are manually
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deconfigure a mission's equipment network, manually reconfigure the network of a scheduled
mission, and manually configure an unscheduled

After some period of time, ALLY checks to see if the appropriate operator action has been
completed. If it has not been completed, ALLY reminds the operator of the missed system request
and offers to perform the task. The operator may then tell ALLY to perform the task or choose to do
it him/herself.

If the operator tells ALLY not to perform the task, ALLY does not provide additional
reminders. Repeated reminding was intentionally not implemented to prevent ALLY from
becoming a nuisance or a nag, if for some reason the operator intentionally choose not perform a
task (Knaeuper and Morris, 1984).

ALLY's Limitations

As with any cognitive system, either human or artificial, ALLY has strengths and
limitations. ALLY's strengths are speed and computational processing capabilities. ALLY
limitations in the GT-MSOCC domain are incorrect identification of software failures and a
limited ability to successfully undertake planning.

ALLY does not accurately determine all software failures; it makes both Type I (i.e, false
alarms) and Type II (i.e., missed failures). Since ALLY does not have perfect knowledge of the
state of the system, it makes incorrect inferences about the data quantity and quality in the
equipment networks. Errors occur when ALLY is testing hypotheses about the status of a
particular component (i.e., normal or failed). ALLY can generate false alarms when an
equipment has not failed and can miss a failure that has occurred. These errors are not
intentional but are due to misinterpretation of the random noise in the system associated with
normal fluctuations in the data flows.

ALLY's other limitation is planning. In GT-MSOCC, ALLY does not always accurately
perform activities that support unscheduled support requests. These activities require ALLY to
identify equipment that will be available for the duration of the support request. To determine
feasibility of support, ALLY needs to know three things: 1) exactly when the configure command
will be issued; 2) how long it takes to identify all of the needed equipment: and 3) much time the
operator takes before issuing the configure command.. ALLY must estimate these time. These
estimates, plus the duration specified in the support request, define an exact planning window that
ALLY uses to determine if the support request can be scheduled.

To carry out unscheduled configure support requests, ALLY takes a snapshot of the current
system state and checks to see if the mission can be supported throughout the planning window. If
any of the system constraints or any of the equipment requirements are not satisfied during any

portion of the planning window, ALLY concludes that the mission cannot be supported. ALLY does
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not have the capability to "slide” the planning window to determine if waiting a few seconds
changes the answer. A human operator, on the other hand, will notice that the mission could be
supported if the configure command was delayed for 30 seconds, for example. ALLY is unable to
do this type of sensitivity analysis. Consequently, ALLY can commit an error by indicating that
the mission cannot be supported when in fact it can.

ALLY can also indicate that a mission can be supported, but, by the time the operator
actually issues the configure command, a conflict exists. This occurs when the planning window
ALLY used was not long enough to include operator delays.

Both of these errors are examples of the "brittle" trait of knowledge-based systems. Even
state-of-the-art systems are not as flexible as a human decision maker in novel or ambiguous
situations.

Although ALLY has limitations, these limitations do not hinder its capability to function
effectively as an operator's assistant. As with any joint cognitive system, each cognitive agent
must recognize the strengths and limitations of the other agents. In order for a joint cognitive
system to perform effectively, cognitive "impedance matching” must occur (Moray, 1986; Woods,
1986). With respect to ALLY, ALLY's limitations in planning are compensated by the human
operator's planning capability. In addition, ALLY's strength in computational and recording
capabilities compensate for the human operator's limitations in monitoring and troubleshooting

data flows.
Experimental Evaluation of Ally

Experimental Design

An experiment was conducted to evaluate the effectiveness of ALLY as an operato}'s
assistant. The experiment compared the performance of a team of two human operators with a
team comprised of an operator and ALLY (Figure 23). Performance measures included those in
the original GT-MSOCC experiments (Mitchell and Saisi, 1987; Mitchell and Forren, 1987).

Ten undergraduate Air Force ROTC cadets from Georgia Institute of Technology
participated as subjects for the experiment. Subjects participated in both experimental conditions:
control of GT-MSOCC with a human assistant and control of GT-MSOCC with ALLY. Several
questionnaires were used during the experiment to collect subjective data. At the end of each
experimental session, the subjects completed a questionnaire to attempt to elicit the
interaction/cooperation strategy subjects used with either the human or computer-based assistant.
In addition, the subjects completed an ALLY Exit questionnaire and a Human Exit questionnaire
at the end of their last data session with the respective assistant. The purpose of exit questionnaires

was to elicit opinions about important aspects of the assistant. Finally, at the end of the
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- experiment, the subjects were asked to complete a Subjective Comparison Rating questionnaire to
compare their opinions about the two assistants.

The subjects participated in twenty-four sessions: eight sessions of baseline GT-MSOCC
training, three sessions of human assistant training, four sessions human assistant data
collection, five sessions of ALLY training, and four sessions of ALLY data collection. A total of
240 hours of data were collected. The sessions were approximately 45 minutes in length. The
sessions were typically run on consecutive days with one session per day. Occasionally, subjects
missed a day and made up the session by running multiple sessions in a single day.

Analyses of variances were performed to determine the effect of each of the four
independent variables (Condition, Group, Session, and Subject) on each of the sixteen dependent
measures. A significance of .10 was used to detect significant effects. In addition to the statistical
analysis, the results of the questionnaires and analysis of audit logs of the subjects’ activities were
examined to provide additional insight into the individual interaction strategies used by the
subjects. These analyses, in conjunction with the statistical analyses, were used to evaluate the
effectiveness of ALLY as an operator's assistant and to evaluate the proposed theory of cooperation

as it was implemented in ALLY.

Experimental Results

The experimental results are summarized in Figure 24a, b, c. These data indicate that, on
the average, a human-ALLY team performed comparably to a team of two human operators. Only
two performance measures yielded a significant difference: time to compensate for software
failures characterized by termination of data flow and the number of correct responses to
unscheduled support requests. For these measures, the human-ALLY team performed more
effectively. On all other performance measures the ALLY team performed as well as the team of
two human operators. A more detailed discussion is provided in Bushman (1989).

Overall, the performance of the subjects using ALLY as an assistant was as effective as
performance with the human assistant. Individual strategies enabled some of the subjects to
perform better with ALLY than with the human assistant. The primary area that was affected by
personal strategies was in detecting and compensating for software failures. Several subjects
were able to develop a style of interacting with ALLY that enabled them to detect software failures
before either the operator or ALLY could on their own. This enabled them to detect the failures
faster and to correct a larger percentage of the total failures. '

Since ALLY does not have the capability to anticipate schedule conflicts, it is not able to
plan for these events in advance. The subjects that relied on ALLY's capability to respond to
schedule conflicts did not take advantage of their own planning ability. The subjects that



performed best with ALLY did not rely exclusively on ALLY, but used their own capabilities to
anticipate and plan for these events.

An unexpected result was a side-effect associated with the difficulty ALLY has with
planning. ALLY performed as well as the human assistant in responding to unscheduled support
requests. However, because the subjects knew that this was an area in which ALLY made
mistakes, they regularly checked ALLY's answers. The additional checking resulted in more
correct responses to support requests with ALLY.

Subjective preferences indicated that subjects liked different aspects of the two assistants.

They found ALLY to be more efficient and the human assistant to be more natural.

Summary

This experiment provides strong support for the assumption that a computer-based
assistant based on a model of the operator's function can perform as well as a human in a
supervisory control team. As with any cognitive system (either human or artificial), ALLY had
strengths and limitations. The subjects that performed the best with ALLY were able to capitalize
on its strengths and compensate for its weaknesses. The result was an overall increase in the
system performance.

This research demonstrated that a computer-based assistant founded on the identified
principles of human-machine cooperation and an operator function model of the supervisory
control task can achieve performance compatible with a human assistant. In addition, this
research has provided a "starting-point” from which a finer theory of cooperation can be
developed. The significance of this research is that it has provided empirical data about the nature
and effectiveness of human-machine cooperation in supervisory control applications.

Quantitative experimental data demonstrated the feasibility of the architecture for a
computer-based assistant. Qualitative data, in the form of subjective evaluations, identified some
of the individual interaction and cooperation strategies.

These quantitative and qualitative analyses may form the basis of a more refined theory of
human-machine cooperation. Since no theory exists, exploratory research is essential to develop a

more definitive theory of cooperation.
Conclusions

Overall, this research has been very productive. It pioneered research into the possibility of
constructing an intelligent operator's assistant. An architecture for a model-based intent
inferencer was designed and implemented. Once running, the ability of the system to correctly

maintain a model of operator intentions as postulated functions, subfunctions, and tasks, and to
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interpret actual actions in that context was extensively evaluated. Given a valid model of operator
intentions, OFMspert was augmented with control properties. Again, an extensive empirical
evaluation demonstrated that a human-ALLY team controlled a simulated satellite ground
control system as effectively as a team comprised of two human operators.

This research showed that for complex dynamic systems, such as satellite ground control,
the operator function model (OFM) provided a compact representation of functions, intentions, and
operator activities in complex dynamic system. Furthermore, the OFM was a successful
organization for information that OFMspert could use to hypothesize and interpret current operator
activities. OFMspert's ACTIN, blending the OFM and a blackboard paradigm for problem
solving, proved to be an effective means of dynamically constructing and maintaining a model of
operator intentions. Finally, the OFM guided the design of OFMspert's control capabilities. The
interactive, flexible functionality of ALLY (OFMspert with control) was shown to be as effective an
assistant to the human controller as another experienced operator.

The OFM and the OFMspert structures show strong promise for application in a variety of
domains in which a task-analytic description of operator activity is available and where there is
an interest in providing expert system capability to augment human operator capability. Finally,
OFMspert exists as an alternative use of artificial intelligence (i.e. its Blackboard model of
problem solving) in complex systems. Rather than replacing operator control activities or
running in parallel, OFMspert was designed to interact with the human operator and act as a
assistant . The intention was not to design two, parallel decision makers, but rather a human-
computer symbiosis that acts in similar ways to effective teams of human decision makers.

This research resulted in many papers and presentations and several research awards.
Listings of the papers and presentation are in Appendix A. Copies the major papers and technical
reports follow in Appendix B.
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Major GT-MSOCC Supervisory Control Functions
Figure 3
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Configure 100 %
Deconfigure 100
Answer 96.2
Replace 94.8
Equipment schedule page requests 90.3
Mission schedule page requests , 85.7
Interior telemetry page requests 84.3
Endpoint télemetry page requests 76.5
MSOCC schedule page requests 75.5
Telemetry page requests 70.2
Reconfigure 60.8
Events page request = 53.9
Pending page .request 33.3

Experiment 1: Average Percentage of Equivalent Interpretations
Between ACTIN and a Human Domain Expert.
(Ordered by Rank).

Figure 11
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Configure 100 %
Endpoint telemetry page requests 100
Deconfigu ré 97.1
Telemetry page requests 96.3
Answer 914
Reconfigure 91.2
Interior telemetry page requests 87.1
Replace 75.3
Mission schedule page requeéts . 66.7
MSOCC schedule page requests 50.3
Equipment schedule page requests 21.8
Events page request | 17.7
Pending page request 16.7

Experiment 2: Average Percentage Of Equivalent Interpretations
Between ACTIN And Verbal Reports.
(Ordered By Rank).

Figure 12
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Figure 14
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Figure 17
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